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We illustrate the importance of many-body effects in the Fourier-transformed local density of states �FT-
LDOS� of d-wave superconductors from a model of electrons coupled to an Einstein mode with energy �0. For
bias energies significantly larger than �0, the quasiparticles have short lifetimes due to this coupling and the
FT-LDOS is featureless if the electron-impurity scattering is treated within the Born approximation. In this
regime, it is important to include boson exchange for the electron-impurity scattering, which provides a “step
down” in energy for the electrons and allows for long lifetimes. This many-body effect produces qualitatively
different results, namely the presence of peaks in the FT-LDOS, which are mirrors of the quasiparticle inter-
ference peaks which occur at bias energies smaller than ��0. The experimental observation of these quasi-
particle mirages would be an important step forward in elucidating the role of many-body effects in FT-LDOS
measurements.
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I. INTRODUCTION

Many-body effects are known to influence the electron
spectral function in cuprates, in particular the peak-dip-hump
lineshape seen in the superconducting state by both angle-
resolved photoemission and tunneling.1 The nature of the
bosonic modes that gives rise to this lineshape is a topic of
much debate. Among the possibilities that have been dis-
cussed in the literature are certain optical phonons, as well as
the spin resonance seen by inelastic neutron scattering. They
all have a comparable excitation energy �0�40 meV for
optimal doped Bi2Sr2CaCu2O8+� �Bi2212�, which is also
near the energy of the antinodal gap �A. Very recently it has
been suggested that scanning tunneling spectroscopy �STS�
can be useful in revealing the electron-boson coupling in the
cuprates.2 In STS, the differential conductance dI /dV�r , eV�
is a measure of the local density of states �LDOS� ��r ,�
=eV� of the electrons, while the Fourier transform �FT� �r
→q� yields ��q ,�� �FT-LDOS�. The location of the peaks of
��q ,�� provides information about the excitation spectrum
of the electronic states.3,4 In view of the suggestion in Ref. 2,
it is particularly important to carefully examine how
electron-boson coupling affects these peaks.5

Modulations of the LDOS and the concomitant peaks in
��q ,�� are due to electrons scattering from impurities. In
most studies, the electron-impurity scattering has been
treated either within a T-matrix approximation6 or a Born
approximation.7 In this framework, the peaks in ��q ,�� ap-
pear at wave vectors q=k f −ki, where k f and ki are points of
high density of states at the energy �. This approach has
been quite successful in understanding FT-LDOS data for
�����A and has been denoted as the “octet” model.4 We
note that the success of this approach depends on the exis-
tence of electronic states with long lifetimes in this energy
range. Subsequent to this, there have been attempts to go
beyond these approximations by including the interaction of
the electrons with either phonons or spin fluctuations.5,8

The purpose of this Rapid Communication is to reveal
that for bias energies greater than ��A, where no quasipar-
ticles are observed in photoemission,9 there can be sharp
peaks in ��q ,�� due to a boson exchange process that ap-

pears beyond the Born approximation for the electron-
impurity scattering. For ���	�0, an electron can decay into
a lower energy state by emitting a boson of energy �0. As a
result, the lifetime of the electrons with energy � that is
significantly larger than �0 is severely reduced, which is the
primary reason for the absence of sharp peaks in ��q ,�� at
the level of the Born approximation. But going beyond the
Born approximation in the process shown in Fig. 1�b�, an
electron first emits a boson, which reduces its energy to ���
−�0. If this reduced energy is not significantly larger than
�0, the resulting electron state �the internal fermion line of
the diagram� is once again long lived and consequently con-
tributes to peaks in ��q ,�� by scattering from the impurities.
In this process, the location of the peaks at � is determined
by the excitation spectrum at an energy ����−�0�sgn���.

-1.0

-0.5

0.0

0.5

1.0

q
y

/π

-1.0 -0.5 0.0 0.5 1.0
qx /π

(d) qA

q1

k p p+q k+q

(b)

(c)

(a)

k k+q

FIG. 1. �Color online� Panels �a�–�c� show the relevant diagrams
considered in this Rapid Communication; Born diagram, vertex cor-
rection, and the self-energy, respectively. The cross represents an
impurity and the wiggly line represents a boson. In Figs. 1�a� and
1�b�, the electrons �straight lines� are dressed by the self-energy. In
Fig. 1�c�, the electron line is bare. Panel �d� shows the constant
energy contours of the bare dispersion for two energies −�
=20 meV �the closed “banana” contour� and −�=76 meV �the
open contours�, noting that �A=37 meV. The wave vector q1 con-
nects the tips of the closed contour and qA connects the inner of the
two open contours along the antinodal direction.
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That is, one has mirages of the octet peaks at ��QI���A that
are mirrored at an energy ��QM�= ��QI�+�0. We note that this
argument is based entirely on the energetics of the electron-
boson interaction and does not depend on the momentum
space structure of the bosons �i.e., whether the bosons are
spin fluctuations peaked at large wave vectors or phonons
peaked at small wave vectors�, though of course the momen-
tum form factor of the bosons will lead to quantitative dif-
ferences.

II. MODEL

We study a two-dimensional system of superconducting
electrons described by a BCS model interacting with a boson
mode and coupled to an isotropic potential scatterer. It is
described by the Hamiltonian H=HBCS+Him+Hel-b. Here
HBCS=�k,
�kck


† ck
+�k�k�ck↑
† c−k↓

† +c−k↓ck↑�, where ck

†

�ck
� creates �annihilates� electrons with spin 
 at
wave vector k, the normal-state dispersion is given by
the tight-binding expansion �k= t0+ t1�cos kx+cos ky� /2
+ t2 cos kx cos ky + t3�cos 2kx + cos 2ky� / 2 + t4�cos 2kxcos ky
+cos kxcos 2ky� /2+ t5 cos 2kxcos 2ky and the superconduct-
ing gap has the d-wave form �k=�M�cos kx−cos ky� /2, with
the lattice constant set to unity �M denoting the �� ,0� point�.
In order to study the sensitivity of ��q ,�� to the dispersion,
we considered two sets of values for the parameters ti, one
taken from Ref. 10 and the other from Ref. 11. For both
dispersions, the antinode is at kA= �1,0.18��. They differ in
a way that the first dispersion has �M close to the Fermi
energy �−34 meV�, whereas it is further away for the second
�−119 meV�. We focus here on the results from the second
dispersion, though qualitatively similar results were obtained
from the first. For �M, we choose 40 meV, a typical value for
optimal doped Bi2212.

The electron-impurity scattering is given by Him
=V0�k,q,
ck+q


† ck
, where V0=1 eV in our calculation �note
that V0 simply sets the scale for the FT-LDOS�. For the sake
of concreteness, we take the coupling between the bosons
and the electrons to be of the form Hel-b=g�iSi ·si, where Si
and si are the spin fluctuation and the electron-spin operators,
respectively, at site i, though our results hold equally well for
optical phonons. We fix the magnitude of the coupling con-
stant g from the condition that in the normal state ��k=0�,
the inverse quasiparticle weight z−1=1− � Re 
���

�� �2 at the
Fermi energy, where 
��� is the electron self-energy due to
interaction with the spin fluctuations. This gives 3g2

=0.0176 eV2. The dynamics of the spin fluctuations is given
by ����Q , i�n�=��i�n����, with ��i�n�=2�0 / ��n

2+�0
2�,

where ����Q ,��= 	T�S��Q ,��S��−Q ,0�
 is the spin-
fluctuation propagator �the overall prefactor being absorbed
into the definition of g�. Here � and � are spatial indices, �n
is a bosonic Matsubara frequency, and the mode energy �0 is
taken to be 39 meV. In our model, we take the bosons to be
independent of momentum for the following reasons. First, it
allows us to concentrate on the energetics. As discussed in
Ref. 10, as long as the form factor of the bosons is finite
throughout the zone, then the self-energy will be dominated
by the density of states singularities associated with the an-
tinodal and M points of the internal fermion line. Second, it

greatly simplifies the calculation of the vertex diagram �Fig.
1�b��.

Using Nambu notation, the 2�2 electron Green’s func-
tion with self-energy correction �Fig. 1�c�� is given by

G−1�k,z� = � z − �k − 
11�z� − �k − 
12�k,z�
− �k − 
12

� �k,z� z + �k − 
22�z� � ,

where z is the complex frequency. The diagonal self-energies
at T=0 are given by10 
11/22�z�=3g2�k�z��k�1
+�0 /Ek�� / �z2− ��0+Ek�2�, where Ek=
�k

2 +�k
2. In the above

equation, the k summation is performed numerically with an
intrinsic lifetime broadening factor �=2 meV for z=�+ i�.
In Fig. 2�a�, we show the real and imaginary components of

11�z� as a function of �. Im 
11��� is zero for �����0 and
has pronounced peaks at ���=�0+�A and �0+EM. Conse-
quently, for energies up to and slightly beyond �0, the elec-
tronic states form well-defined quasiparticles, while for ���
��0, they do not. Strictly speaking, for momentum indepen-
dent bosons, the off-diagonal self-energies vanish due to the
d-wave symmetry. However, in order to keep the antinode
gap energy unrenormalized, we use the ansatz 
12�k ,��
=�k�Z���−1�, where Z���=1− 1

2�Re�
11���+
22����. In

this scheme, the renormalized dispersion is Ẽk���k
2

+�k
2 /Z2�Ẽk��1/2.

III. RESULTS

We first compute the contribution to the FT-LDOS from
the Born diagram �Fig. 1�a��. This is given by ��b��q ,��
=−�2 /��Im�V0�kG1�

R �k ,����̂3���G�1
R �k+q ,���, where sum-

mation over repeated Nambu indices � ,�= �1,2� is implied
and �̂i are Pauli matrices in Nambu space, with R denoting
retarded propagators. The variation of ��b��q ,�� versus
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FIG. 2. �Color online� �a� The real and imaginary parts of the 11
component of the self-energy. �b� Contribution to the FT-LDOS
from the vertex diagram for −�=�0+�A=76 meV. The dashed
line shows the contribution from the Born diagram. The inset shows
the contribution from the Born diagram for electrons without the
self-energy correction.
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q= �qx ,0� is shown as the dashed curve in Fig. 2�b� for −�
=�A+�0. We note that due to a large lifetime broadening,
there is no peak in ��b��q ,�� at this energy. The effect of the
lifetime can be seen clearly by comparing this curve with the

one in the inset, which is obtained by computing ��b��q ,�
=−�0−�A� with 
̂=0 �i.e., for unrenormalized electrons�.

Next we calculate the FT-LDOS contribution of the vertex
diagram �Fig. 1�b��. This is given by

��v��q,�� = − � 2

�
�Im�V0�

k
G1�

R �k,��T��
R �q,��G�1

R �k + q,��� , �1�

where

T���q,i�n� =
3g2

�
�

�n,p
��i�n�G���p,i�n − i�n���̂3���G���p + q,i�n − i�n� .

Here � is the inverse temperature and �n is a fermionic
Matsubara frequency. We note that in our model, the matrix
T̂ does not depend on k due to the momentum independence
of the bosons. The variation of ��v��q ,�� along the bond
direction is plotted in Fig. 2�b� for �=−��0+�A�. We note
the pronounced structure with a sharp maximum at qx
=0.30� and a sharp minimum at 0.34�. As ��� increases
from �=−��0+�A� to −��0+ ẼM�, where ẼM is the renor-
malized energy at the M point ��60 meV�, this structure
evolves into a single broad minimum at qx=0.23� �not
shown�. This can be contrasted with the Born result, where

there is only a weak structure in this entire energy range.
For �����0, due to a large Im 
�����, the k summation

in Eq. �1� involving the product of two G functions yields a
quantity �denoted as C�, which is approximately constant as
a function of q. The variation of ��v��q ,�� with q for these

energies is mainly due to that of T��
R �q ,��. For the frequency

summation involved in the computation of T��
R �q ,��, the

main contribution is due to the bosonic pole, which puts the
electrons with momentum p and p+q �Fig. 1�b�� at an en-
ergy �+�0 for � negative. This contribution can be written

as �for ��−�0� T̂R�q ,��coh=3g2�pĜ�p ,�+�0��̂3Ĝ�p
+q ,�+�0�. This expression is reminiscent of the Born con-
tribution at an energy �+�0 and gives rise to sharp structure
for ���−�0��0, since the electronic states are well defined
at these energies.

To understand this in greater detail, we plot in Fig. 3�a�
the contribution to the FT-LDOS from the Born diagram, and
in Fig. 3�b� the sum of the Born and vertex contributions
versus �qx ,0� for �0� �����0+�A. In Fig. 4, we in turn
plot the resulting peak dispersions from the real and imagi-
nary parts of the Born and vertex diagrams for all �����0

+ ẼM. We note that the Born dispersion is well defined in the

energy range between zero and ẼM, although the Born peaks
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FIG. 3. �Color online� �a� Born contribution and �b� Born plus
vertex contributions to the FT-LDOS for energies ranging from near
−�0 �−40 meV, top curve� to −�0−�A �−76 meV, bottom curve�
in steps of 2 meV. The curves are offset for clarity.
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FIG. 4. �Color online� Dispersion of the Fourier peaks along the
bond direction versus energy for �a� the real part and �b� the imagi-
nary part of the Born and vertex diagrams. Note the characteristic �
shape of the Born dispersion and its �0 �39 meV� displaced mirage
in the vertex dispersion.
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are damped for �0� ���� ẼM due to lifetime broadening.
For �����A, there are two peaks. The one at larger qx cor-
responds to the scattering between the tips of the constant
energy contours, which look like bananas in this energy
range. This is denoted by the vector q1 in Fig. 1�d� �structure
corresponding to the even larger vector q5 of Ref. 4 is not
plotted in Fig. 4�. The one at smaller qx corresponds to the
so-called Tomasch peak noted in Ref. 7. It corresponds to
where the banana first stops overlapping its qx displaced im-
age. For �A� ���� ẼM, one finds a dominant maximum
which traces out the separation of the inner contours in Fig.
1�d� along the antinodal ��� ,0�− �� ,��� direction �denoted
as qA in Fig. 1�d��, with secondary peaks �not plotted in Fig.
4� corresponding to connecting an inner to an outer contour
or an outer to an outer contour �these secondary peaks have
less weight due to the reduced spectral weight of the outer
contours�. The combination of these peaks �two for ���
��A and one for ���	�A� gives a characteristic “�” shape
to the overall bond oriented dispersion, as is obvious from
Fig. 4. Note that there are some differences in the dispersions
associated with the real and imaginary parts of the Born dia-
gram and their connection to the vectors denoted in Fig. 1�d�.
This is due to several factors; the finite lifetime of the elec-
tronic states, the dispersion �k, and the fact that Re G has a
zero where Im G has a pole.

We now turn to the vertex diagram. Its dispersion �Fig. 4�
essentially mirrors the Born dispersion at a bias energy dis-
placed by �0. As a consequence, we denote this as a “qua-
siparticle mirage.” In addition, for biases near �0, the energy
undisplaced Born term is also reflected in the vertex diagram
�since the external lines in Fig. 1�b� have well-defined spec-
tral peaks, and the boson exchange process has a limited
phase space, for these energies�. We note that there are some
differences in the lineshapes of the imaginary part of the
vertex term as compared to that of the Born term displaced
by �0, as is evident in Fig. 3. This occurs since both the real

and imaginary parts of the components of T̂ contribute to
��v��q ,�� as C is a complex quantity.

Next, we comment on a few qualitative aspects of the
vertex contribution to the FT-LDOS. �i� The inclusion of a
momentum form factor for the boson propagator should not
make any qualitative change to the peak structure. Such a

form factor �peaked around some Q0� can be thought of as a
momentum constraint forcing k�p+ �̂Q0 �where �̂ is a lat-
tice group operation�. However, in the mechanism discussed
above, the electrons with momentum k and k+q �external
lines of Fig. 1�b�� do not play any special role. �ii� It is
important that the boson that provides the “step down” in
energy has a sharp spectral function. A finite lifetime of the
boson or its dispersion with q will broaden the Fourier peaks.
For similar reasons, we anticipate that higher-order vertex
corrections will lead to weaker and broader contributions to
the Fourier peaks because of the additional momentum sums
involved. �iii� Recently, the observation of peaks in the
Fourier-transformed d2I /dV2 spectrum at q��0.4� ,0� has
been reported for optimal doped Bi2212 at �����0+�A
�Ref. 2�. This is comparable to the peak position we find
from our vertex corrected calculation at this bias energy. So
far though, no dispersion of these peaks has been reported.

IV. CONCLUSION

We demonstrated the importance of vertex corrections to
electron impurity scattering in the study of tunneling spec-
troscopy data for the cuprate superconductors for absolute
bias energies larger than �0, where �0 is the excitation en-
ergy of a boson coupled to the electrons. The vertex correc-
tion is due to the emission and reabsorption of a boson by the
electrons, which leads to a step down of the internal fermion
line to energies where quasiparticle states are well defined,
which as a consequence, gives rise to sharp peaks in the
FT-LDOS. We denote these new peaks as “quasiparticle mi-
rages,” whose dispersion mirrors the previously observed
quasiparticle interference peaks at absolute biases smaller
than �0. The observation of these dispersive “mirages”
would be an important reflection of the nature of the many-
body interactions in cuprates.
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